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Extensions of supersymmetric spin systems 
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Institut fur  Theoretische Physik, Universitat Karlsruhe, Postfach 6380. Kaiserstrasse 12, 
75 Karlsruhe 1. FDR 

Received 15 June 1977 

Abstract. A discussion of supersymmetric spin systems is presented extending the results 
obtained in a recent paper. A two-dimensional model is given and gauge invariance is 
defined; the latter is shown to necessitate the introduction of further spin operators. 

1. Introduction 

In a recent paper (Nicolai 1976, to be referred to as I) it was shown that supersym- 
metry (graded Lie algebras) may be applied to non-relativistic systems containing 
bosonic and fermionic variables such as (an)harmonic oscillators and spins. In this 
article we want to extend some of the results obtained in 1. As in I the basic algebra is 

{Q, Q) = {Q’, Q’) = 0 

[Q, HI = [a’, HI = 0 

{Q, Qt) = H 

where Q and Qt generate supersymmetry transformations and H is thC Hamiltonian 
of the system. As was shown in I, non-trivial realisations of (1.1) may be constructed 
in a systematic fashion by introducing the concept of a ‘superfield’ d(f,  8, e)? which is a 
function of t E R and two anticommuting elements 8 and e of a Grassmann algebra. 
The Taylor expansion of 4 in 8 and 8 terminates after a finite number of terms 
because 8* = 8 = 0; the physical quantities of a model are to be associated with the 
coefficients of 8 and e in this expansion. A superfield in itself may be either an even or 
an odd element of the Grassmann algebra and is then said to ‘commute’ or to 
‘anticommute’, respectively. In I it was shown that commuting superfields may be used 
to construct systems containing spins and harmonic oscillators whereas anticommut- 
ing superfields can be used to construct pure spin systems with non-trivial interactions. 
Only the latter will be considered in this article. 

As was argued in I, the use of anticommuting operators appears to be indispens- 
able for supersymmetry to make sense; this, however, presents a difficulty when one 
considers dimensions d a 2 .  For d = 1, the connection between Fermi and Pauli 
operators was rather free from ambiguities as a ‘natural’ ordering of the spins was 
given. For d 3 2, there is no uniquely ‘natural’ way to relate Fermi and Pauli operators 
although the transcription may still be performed, the number of spins being 

t The general concept of a superfield is due to Salam and Strathdee (1974). 
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denumerable for d <CO (Lieb er d 1961). For instance, on a two-dimensional lattice 
we have 

where %j,j+rl is the curve connecting j and j + n ^  when enumerating spins and SI = 
$(a: + 1) is the occupation number of spin 1 (figure 1). In general, we may not expect 
the exponential factors to cancel; only for particular interactions such as 
$ J + J ~ j + r l * j + n ^  - u~(+~+f i  these undesired factors cancel out (another example is shown in 
figure 2). Thus, it appears that none of the models of this paper for d 3 2 is in any 
direct and obvious fashion related to usual d-dimensional Heisenberg models al- 
though one should not exclude the possibility of their thermodynamic properties 
resembling each other (this is the main motivation for writing this article). 
Consequently, we propose to study supersymmetric spin models in their own right; 
supersymmetry which seemingly cannot be formulated for usual spin models with 
d 3 2 may then yield insights which could not be obtained otherwise. 

t y  

*,1,2lf * 41.21 = * 
Figure 1. Two ways of enumerating spins on a two-dimensional lattice. 

Figure 2. An example of a four-spin interaction where unwanted factors cancel. 

In 0 2, a generalisation of the spin model given in I for d = 2 is presented and a 
‘XY-type’ model? is shown to be obtainable by going to a singular limit. In 0 3, gauge 
symmetry is introduced-here, solely for simplicity, we restrict our attention to the 
case d = 1 mainly and indicate how to generalise to d 3 2. All calculations will be 

t By abuse of language we call I& I , ~ ~ + ~ + H C  an ‘XY-type’ interaction; no confusion should arise when we 
make use, freely but not always correctly, of conventional terminology. 
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made using Lagrangians and regarding Grassmann numbers as the ‘classical’ 
analogues of spin operators. After changing to the Hamiltonian, these ‘classical’ spins 
are quantised and can only then be interpreted physically. In appendix 1 the possible 
consequences of supersymmetry for correlation and ‘pseudo-correlation’ functions are 
discussed more thoroughly than in I; in appendix 2, we show how to reconstruct the 
generators of supersymmetry from a given Lagrangian. 

For the convenience of the reader we explain here the notation that will be needed 
in the following. Superfields will be denoted by Xi, A&, V l , .  . ., where j ,  k, I , .  . . are 
lattice indices. The expansion coefficients of superfields in 8 and 8 will be denoted by 
ai, c k ,  V I , .  . . if they commute and by xi, A&, 91,. . . if they anticommute. 

2. Two-dimensional model 

We introduce a set of anticommuting constrained superfields {Xi}  (for details cf I) 

DX2j = 0: x2i = x2j + eazi +$ee;izj 
DXZ = 0: X ;  = 22j + 8 ~ $ - $ e @ , ~  
DX*j+n̂  = 0: x ~ ~ + ~  = f Z j + A +  ~ a ~ ~ + 8 + $ ~ 8 , ~ ~ ~ + ~  

DX$+s= 0: x ~ + R =  ~ 2 ~ + 6 +  Ba2,+R-&~e,+~~+~ 

- .  (2 . l ) t  

- 

where now, in contrast to I, we take the lattice to be two-dimensional$ (figure 3): 

i = 0‘1,j2); lSjiGN 

n ^ = l , 2 ;  
* A  i = (1, 0)’ 2 = (0, 1). 

Figure 3. Lattice G and location of spins; the full circles are for spins 2 j  and the crosses for 
2j+n*. 

As was explained in I, invariants (under supersymmetry transformations) may be 
obtained by mutliplying superfields and extracting those terms that transform as total 
derivatives with respect to t E R. 

The basic invariant containing Xi and Xi* is ( j  E G): 

t The covariant derivatives D and b are given by (I): 

a -d a d  
ae dt a8 dt 

D=-+& and b=---&+. 

(2.3) 

t As in I we assume periodic boundary conditions. 
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(‘kinetic term’). The most general interaction Lagrangian is 

(2.4) 

where gijk gijklm, . . . are totally antisymmetric and HC stands for Hermitian conjugate. 
Note that terms containing an even number of X’s  lead to anticommuting invariants 
and therefore are not included in (2.4). 

As our model we take cf, g E R) 

2 i n t =  (f xj + g  ( ~ 2 ~ 2 j + i ~ 2 j + 2 . i  + ~ 2 ~ 2 j + 2 ~ 2 j + 2 . 2 ) )  +HC. (2 .5 )  

Written out, this is 

a-component jcG j = ( j 1 . j z )  

- a$=f  + g ~ ~ j + i x ~ j + ~ . i  + g ~ 2 j - t . i f z j - i  + g , ~ 2 j + 2 ~ 2 j + 2 . 2  + g ~ 2 i - 2 . 2 2 2 i - f  

- a$+i =f - g , ~ 2 j + 2 . i 2 2 j  (2 .7 )  

- a$+2 = f - g f 2 j + 2 . 2 2 2 j  

and similarly for Hermitian conjugates. Substituting ( 2 . 7 )  into (2 .6 )  and changing to 
the Hamiltonian, the ‘kinetic term’ drops out and we are left with 

This expression will not be written out explicitly but rather we shall consider a special 
case. Setting 

f :  = yg-’ (2.9) 
subtracting 3N2(y /g)2  (a constant) from (2.8) we can take the limit g+O in which, 
clearly, supersymmetry transformations become singular. The model with results is 

lim[H - 3 ~ ~ ( y / g ) ’ ]  
g+o 
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and is evidently 'XY-type'. In one dimension, a similar limit leads to a XY-chain of 
alternating ferromagnetic and antiferromagnetic type. 

3. Gauge invariance 

In this section we shall be concerned primarily with d = 1 and therefore the indices j 
are one-dimensional and run from 1 to 2N. The relativistic case is discussed in Ferrara 
and Zumino (1974) and we shall proceed analogously. As our starting point we choose 
the model (5.6) of I: 

9 = 9 k i "  + 9 i " f  

2N N 

j-1 j = 1  
= invariant part of ( 1 X,X: + g (x2j-lXzF2j+l+ HC)) (3.1) 

where, as in 0 2, {Xi}  are constrained anticommuting superfields (except for the 
indices, the notation is the same as in (2.1)). The equations of motion are 

Now, we introduce N constrained commufing superfields A2i+l: 

DAZi+l  = 0: A2i+l(t, 8, e) = c2j+i(t)+ 8A~,+l(t)+2ieec2j+l(r) 

DATj+l = 0: A&+l(f, 8, e)= c ~ . + l ( t ) + h ; i + l ( f ) e - f i 8 $ c ~ + l ( f )  

which will parametrise gauge transformations$. These are defined by 

(3.2)'r 

(3.3) 

XZj+l(t, 8, 8)+ exp(ihz,+l(t, 8, G ) ) X Z j + l ( f ,  8, 8) 
Xzi(t, 8, #)-exp[-i(A2j-l(t, 8, e ) + A ~ j + ~ ( f ,  8, J))Ix~j(t ,  8, 8) 

and, obviously, (3.1) is invariant with respect to (3.4). Similar definitions hold for X$, 
X$+l. Observe that eihX anticommutes and obeys D(e'*X)=O, as is required for 
consistency. To make the kinetic term E: IXJr,* invariant, we introduce gauge 
superfields V2j+l and V$+I: 

(3.4) 

~2j+l ( t ,  e, 8)= ~2 j+ l ( f )+  Ovzj+l(t)+&i+l(t)e+ eJw,+l(t)  

v;+,(t, e, e)= u$,+l(t)+ e t ~ l z , + l ( t ) + c ~ 2 , + l ( t ) $ + ~ 8 ; u $ + l ( t )  
(3.5) 

which transform as follows: 

Upon expanding V in powers of 8 and 8 and comparing coefficients we find that the 

t In equation (5.7) of I the signs in front of CZ&,-~&,+~ and its Hermitian conjugate should read - instead 
of + . Equation (5.8) should be changed accordingly. 
t For abuse of language see remark in footnote to page 2144. 
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Observe that the w-term is supersymmetric and gauge invariant, transforming as a 
total derivative in both cases. The kinetic term is replaced by 
N N 1 x2j+l e x p ( ~ 2 j t i  + V2*j+i)X$+i + 1 X2j exp(- Vzj-1- V2j+1- VG-1- V$+l)X2j. * 

j = l  j= l  

(3.8) 
(3.8) ,is obviously invariant. From (3.7) it may be seen that we can go to a special gauge 
(in which supersymmetry is no longer manifest), such that 

~2j+l ( t )=  ~ $ + i ( t ) = O  and (~~j+l( t )=S;2j+l( t )=O (3.9) 
and all the physics is contained in (L2i+l, $2j+l and (the real part of) w2i+l. In terms of 
component fields 

a2 
aeae = --{(j2i+l + ea$+1 +$egi2j+l)[i + + $2j+18 

(3.10) 

i X 2 j t 2 i  +a3z2j + azj(4zj-i + $2j+1)22j + a$~2j($2i-i + $2j+1) 

+t2jx2j[w2j-l+ w6-1 + w2j+1+ w2j+1+ * (rj;2j-1+ $2j+1)(42j-1+ (~2j+l)I* 

ij v2 j+ 1 ( t, e, 8) = rj;zj+ 1 ( t  + 8 ( w2 j+ 1 ( t  ) - Iiir2 j + 1 ( t ) )  + 4i 68$2 j +  1 ( t 

D V$+ (t, 8, 8) = ( L Z ~ + I  ( t  ) + 8( w $+I ( f ) + $ir$+1 ( t  >) - $eg&j+ 1 ( t  ) 

To construct an invariant containing gauge fields only we note that because of 
bh2i+l = DAZjcl = 0 and (3.6)t 

(3.11) 

are gauge independent. In the special gauge (3.9) U, U* drop out; a suitable kinetic 
term is given by (in special gauge) 

- 
(3.12) * 2 a -  

-DV2j+iDV$+i ~i$zj+i$zj+i + ~ 2 j + 1 ~ 2 j + l .  aeae 
* In relativistic supersymmetry it was possible to choose V = V*. Here, this turns out to be impossible, for 
to obtain a gauge field invariant we would have to apply D, b twice. However, D2 = fj2 = 0 .  
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Thus, w is an auxiliary variable. Adding (3.1), (3.10) and (3.12) we get the gauge 
invariant extension of (3.1) and use the equations of motion to eliminate a and w: 

(3.13) 

(a'$= U:., a'$+* = a$+l of equation (3.2)). Substituting we get 

(The first term just reproduces the Hamiltonian corresponding to the Lagrangian 
(3.1); note that a' = a'* = 0 if g = 0). Ising-like interactions are contained in w*w-this 
remains true in more than one dimension because, as was discussed in the intro- 
duction, undesired factors cancel; letting g approach 0 a pure Ising model is obtained 
and gauge invariance generates a whole class of equivalent (and, in general, non-Ising- 
type) models. 

To gauge the model of § 2 we define ( j  = (j l ,  j2)) 

and similar calculations may be performed. Of course, the model we then obtain is 
more complicated than (3.14). 

4. Conclusion 

It remains to be seen what advantages and insights can be gained from supersymmetry 
and gauge symmetry as we have defined them. For the special examples discussed in 
the preceding sections there remains the intriguing possibility that one may be able to 
explicitly solve (i.e. diagonalise) a multi-spin interaction by adroitly exploiting its 
invariance under supersymmetry transformations (and, perhaps, gauge invariance). 
Beyond the present framework, a study of different and more complicated graded Lie 
algebras may also be useful, the algebra consisting of Q, Qt and H being the simplest 
example one can think of (Nahm er a1 1977); in contrast to relativistic physics where 
all possibly relevant algebras have been classified (Haag et a1 1975), there is as yet no 
such classification scheme in non-relativistic physics. The hope is, of course, that more 
complicated algebras might eventually lead to the construction of more realistic 
supersymmetric models, describing, for instance, an electron-phonon or any electron- 
boson system, at least in a part of its spectrum. Even if these questions remain a 
matter of speculation for the time being, one should be aware of the increasingly 
important role that graded Lie algebras and anticommuting 'c -numbers' have come to 
play in physics (Berezin and Marinov 1975, 1976, Barducci et a1 1976). 
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Appendix 1 

In this appendix the physical consequences and insights that may be extracted from 
supersymmetry will be discussed. We write B for bosonic and F for fermionic 
operators; Q, Qt-the generators of supersymmetry-are of fermionic type. The 
'parity' (- 1)""' of a state la) is then defined by 

i': if la) bosonic. 

if la) fermionic 
64.1) p ( a ) :  = 

In order to have {[, F }  = [[, B]  = 0 where [ is a Grassmann number, we have to 
stipulate that 

[ l a )  = (-l)P'"'la>[. ('4.2) 
Furthermore two types of trace operators must be introduced: 

Tr B:= C(a lB\a)  'Bose trace' 

5 B:=C(-l)P'")(a/Bla) 'Fermi trace' 

(note that (alFla) = 0 always). From (A.2) and (A.3) it follows easily that 

(I 

64.3) 

a 

T r [ B = l f - r B  and F r [B=[TrB .  (A.4) 
The cyclicity properties are 

Tr[B1, B2] = Tr[FI, Fz] = 0 

Fr[B1, ~~1 = Tr{Fl, F J  = 0. (A.5) 

In accordance with (A.3) two types of expectation functionals are defined: 

Tr B ePPH 
Tr eVBH 

and (B)':= 
Tr B eVPH 
Tr e-PH 

(B) := 

and again 

(58) = [(B)' and ([B)' = [(B). 

All identities among correlation functions for supersymmetry follow from 

a 
$[XI ,  FI) = ((0, F))' = 0 

a 
-({SQ, F))' = 40, FI) = 0 

where F is any Fermi-type operator that can be built from the fundamental operators 
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(4 ,& ,Y, 2 in our examples). It is not known to the author whether the (. . .)' bracket 
has any significance in itself for 

(1) '=0 64.9) 

as follows from the basic algebra (cf I). In any case, we regard it as an auxiliary device 
to extract information from supersymmetry. 

Appendix 2 

To reconstruct operators Q and Q' from a given 

where K is some function of rpi, the fundamental 

Lagrangian we note that 

(A.lO) 

variables appearing in 3 and of i, f 
If rp anticommutes one has to be careful about the ordering of Srp and a / aq  as 

Ifaq is applied from left to right then Srp(a/arp) gives the correct result (otherwise 
(a/arp)srp). Using equations of motion we obtain from (A.lO) 

Hence, the charges are 

For the model (3.1) this procedure leads to equation (3.1) of I. 
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